陶瓷

高温烧蚀多相陶瓷向高熵陶瓷原位转变的

发布时间:2024/9/17 13:11:19   

来源

材料科学与工程

超高温陶瓷硼化物凭借高熔点、高硬度、高模量以及优异的化学惰性常被用做碳/碳复合材料(C/C)的抗烧蚀涂层以提高C/C复合材料在高温含氧环境中的抗烧蚀性能。然而,单组元的超高温陶瓷硼化物在烧蚀的过程中会形成一层疏松多孔的氧化层,氧化层受到高温高速气流的冲刷以及在服役温度频繁交变的情况下会发生开裂,不利于涂层的长时稳定服役。如何改善氧化层的高温稳定性是提高抗烧蚀涂层性能、延长服役寿命的关键因素。到目前为止,大量的研究表明,高熵陶瓷氧化物相比单组元的氧化物具有更加优异的力学性能、热力学稳定性以及热物理性能。若通过成分的设计使超高温陶瓷涂层能够在超高温烧蚀的过程中原位形成高熵陶瓷氧化物层,将有效改善单组元氧化物层力学性能不足、易相变以及高温服役稳定性差的问题,成为一种潜在的提高涂层抗烧蚀性能的有效途径。

近日,西北工业大学孙佳副教授团队通过成分调控设计出一种由(Hf0.5Zr0.5)B2-SmB6-ErB4-YB6组成的多元复相硼化物(HZRB),利用超音速等离子喷涂技术在C/C复合材料表面制备HZRB陶瓷涂层。通过研究HZRB涂层的高温烧蚀过程发现,利用硼化物高温烧蚀过程中的自发氧化反应,HZRB涂层存在高温烧蚀服役过程中高熵氧化物(Hf0.2Zr0.2Sm0.2Er0.2Y0.2)O2-δ的原位合成现象,并通过第一性原理计算揭示出高熵氧化物的形成机理。通过对比HZRB涂层与(Hf0.5Zr0.5)B2(HZB)涂层的抗烧蚀性能,发现HZRB涂层具有更优异的抗烧蚀性能,主要归因于原位形成的高熵氧化物层相比HZB涂层烧蚀后形成的(Hf0.5Zr0.5)O2氧化层具有更加优异的相稳定性,这项工作为抗烧蚀涂层的成分设计提供了全新的思路,为高熵陶瓷的热服役原位合成提供了新途径。相关工作以“In-situphaseevolutionofmulti-

转载请注明:http://www.aideyishus.com/lkyy/7626.html

------分隔线----------------------------