陶瓷

纳米陶瓷涂层的性能

发布时间:2023/5/19 14:21:12   
白癜风秘方 https://m-mip.39.net/nk/mipso_4580872.html

传统陶瓷材料硬度高、耐高温、耐腐蚀,但脆性大、结合强度低、韧性差易出现裂纹等缺点,应用存在较大限制。随着纳米技术的发展,将纳米技术和涂层技术相结合,能够发挥其综合优势,实现材料的力学、热学、电磁学等方面的优良性能,满足其结构性能(强度、韧性等)和环境性能(耐磨、耐腐蚀、耐高温等)的需求。

纳米陶瓷涂层性能指标

1、断裂韧性

断裂韧性是反映材料抵抗裂纹失稳扩展的性能指标。纳米陶瓷涂层中存在由纳米颗粒熔化、凝固得到的基体相和未完全熔化的纳米颗粒组成的两相结构,当裂纹扩展到未熔或半熔颗粒与基体相组织界面时,这些颗粒不仅可吸收裂纹扩展能,而且对裂纹扩展有阻止和偏转作用。常规陶瓷涂层中片层状组织间结合较差,裂纹沿层间容易扩展,因此纳米陶瓷涂层韧性优于常规陶瓷涂层。

2、硬度

硬度是陶瓷涂层重要的性能指标之一。喷涂时高温颗粒急速冷却产生的淬硬性、涂层硬度对喷涂工艺参数的依赖性及涂层组织结构的非均质性都会影响硬度的测定。晶粒的细化使得纳米陶瓷涂层的硬度明显大于微米陶瓷涂层。

3、耐磨性

纳米结构涂层硬度和韧性的改善是耐磨性提高的主要原因。纳米陶瓷涂层在磨损过程中可能发生了微凸体的剪切或孔隙等处未完全熔化的颗粒脱离涂层表面,这些细小颗粒在涂层与摩擦件之间的润滑油膜中分散,起到“微轴承”作用,减小了涂层的摩擦系数,从而提高耐磨性能。

4、结合强度

陶瓷涂层的结合强度包括涂层与基体的界面结合强度和涂层自身粘结强度。未扩展的层间裂纹对涂层残余应力的释放作用和纳米结构喂料在喷涂过程中飞行速度比普通粉末高有利于提高结合强度。喷涂粉末纳米化后,可以改善粒子的熔化状态,使涂层孔隙明显减少,且部分孔隙位于变形粒子内部,有助于提高涂层的结合强度。

5、孔隙率

适当的涂层孔隙对于润滑摩擦和高温隔热工件是有利的,但对耐腐蚀、高温抗氧化和高温抗冲刷等工件有害。研究发现,孔隙率与火焰温度和速度有关;也与粒子速度有关,随着粒子速度的增加,孔隙有下降趋势。

6、热导率

热导率是表征热障涂层的主要性能指标,随晶粒变小而降低。由于随着晶粒尺寸的减小,涂层内部的微观界面增多,界面距离减小,使热传导过程中声子的平均自由程降低,材料热导率也随之减小。

来源:宋子豪等,纳米陶瓷涂层的特性及研究现状

武创等,纳米陶瓷涂层的性能及应用

孙方红等,纳米陶瓷涂层制备技术的研究进展

如有侵权请联系删除



转载请注明:http://www.aideyishus.com/lkcf/4650.html
------分隔线----------------------------